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Summary

Uncommitted (naive) murine CD4+ T helper cells (Thp) can be induced to
differentiate towards T helper 1 (Th1), Th2, Th17 and regulatory (Treg) phe-
notypes according to the local cytokine milieu. This can be demonstrated
most readily both in vitro and in vivo in murine CD4+ T cells. The presence of
interleukin (IL)-12 [signalling through signal transduction and activator of
transcription (STAT)-4] skews towards Th1, IL-4 (signalling through STAT-6)
towards Th2, transforming growth factor (TGF)-b towards Treg and IL-6 and
TGF-b towards Th17. The committed cells are characterized by expression of
specific transcription factors, T-bet for Th1, GATA-3 for Th2, forkhead box P3
(FoxP3) for Tregs and RORg t for Th17 cells. Recently, it has been demonstrated
that the skewing of murine Thp towards Th17 and Treg is mutually exclusive.
Although human Thp can also be skewed towards Th1 and Th2 phenotypes
there is as yet no direct evidence for the existence of discrete Th17 cells in
humans nor of mutually antagonistic development of Th17 cells and Tregs.
There is considerable evidence, however, both in humans and in mice for the
importance of interferon (IFN)-g and IL-17 in the development and progres-
sion of inflammatory and autoimmune diseases (AD). Unexpectedly, some
models of autoimmunity thought traditionally to be solely Th1-dependent
have been demonstrated subsequently to have a non-redundant requirement
for Th17 cells, notably experimental allergic encephalomyelitis and collagen-
induced arthritis. In contrast, Tregs have anti-inflammatory properties and can
cause quiescence of autoimmune diseases and prolongation of transplant
function. As a result, it can be proposed that skewing of responses towards
Th17 or Th1 and away from Treg may be responsible for the development
and/or progression of AD or acute transplant rejection in humans. Blocking
critical cytokines in vivo, notably IL-6, may result in a shift from a Th17
towards a regulatory phenotype and induce quiescence of AD or prevent
transplant rejection. In this paper we review Th17/IL-17 and Treg biology and
expand on this hypothesis.
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Introduction

Despite repertoire restriction in the thymus (‘central toler-
ance’) [1], the generation of a diverse T cell repertoire inevi-
tably results in the production of T cell receptors with
specificity for self-antigens [2,3]. Naive thymic emigrants
therefore have the potential not only to respond to foreign
antigens but also to components of self. Maturation of naive
T cells depends critically on their interaction with the physi-

cochemical environment and results in the development of
cells with an effector (and memory) or regulatory function
and the tolerization of autoreactive cells. It is critically
important for the prevention of autoimmune diseases, there-
fore, that self-reactive naive T cells are not induced to mature
into effector cells.

Murine experiments have demonstrated that naive CD4+

helper T cells (Thp) can develop into at least four types of
committed helper T cells, namely T helper 1 (Th1), Th2,
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Th17 and regulatory T cells (Tregs) (see below). In humans,
there is evidence for the existence of all but discrete Th17
cells, although helper T cells secreting interleukin (IL)-17
have clearly been described [4]. IL-17 has a proinflammatory
role and has been implicated in many inflammatory
conditions in humans and mice, while Tregs have an
anti-inflammatory role and maintain tolerance to self-
components (see below).

Naive T cells can be induced to commit to particular lin-
eages based on mode of stimulation, antigen concentration,
costimulation and cytokine milieu [5]. The pathways of dif-
ferentiation towards Th1 and Th2 cells have been elucidated
previously with IL-4 signalling through signal transduction
and activator of transcription-6 (STAT-6) possibly the most
important cytokine in inducing Th2 cell differentiation [6]
and IL-12 signalling through STAT-4, the central cytokine
for commitment towards a Th1 lineage [7]. Once differenti-
ated, each lineage is characterized by its own cytokine profile
(with interferon (IFN)-g being the signature cytokine of Th1
cells and IL-4 the archetypal cytokine of Th2 cells) and tran-
scription factors (T-bet for Th1 [8,9], GATA-3 for Th2 [10],
forkhead box P3 (FoxP3) for Tregs [11,12] and RORgt for
Th17 cells [13]). Although Th1 responses have been impli-
cated in the development of autoimmune diseases (AD)
[14], reduction in IFN-g signalling in mice (using IFN-g
knock-out strains or blocking IFN-g) paradoxically worsens
susceptibility to AD, most notably experimental allergic
encephalomyelitis (EAE) and collagen-induced arthritis
(CIA) [15,16] in the absence of exaggerated Th2 responses,
implying the involvement of other effector populations.
Recent evidence suggests that naive T cells (in mice) can also
be induced to differentiate along a pathway favouring devel-
opment of Th17 or Treg cells in a mutually exclusive manner
[17–19]. Indeed, the Th17 population is important in medi-
ating autoimmune diseases in animals [20,21].

As a result, a novel hypothesis has been proposed [22] with
regards to inflammatory and autoimmune diseases, namely
that skewing of responses towards Th17 or Th1 and away
from Treg (and Th2) may be responsible for the development
and progression of AD or transplant rejection in humans and
that blockade of critical cytokines may result in a shift in this
polarization from Th17/Th1 phenotypes towards Treg and
Th2 (i.e. that ‘regulation and‘dysregulation’ are inducible and
remediable). Our own observations suggest that human
effector T cells can be identified that produce mutually exclu-
sive IFN-g or IL-17 profiles. Additionally, the hypothesis pre-
dicts that blockade of critical cytokines for generation of
Th17 (namely IL-6) can result in remission of AD. The
purpose of this review is to discuss the relevance of Th17 and
Treg in human disease pathogenesis and progression.

IL-17

First cloned in 1993 from a murine cDNA library and known
originally as CTLA-8 [23,24], IL-17A is a member of a family

of IL-17 cytokines (IL-17A–F [25–29]) which are structur-
ally homologous to each other and to a gene in the herpes-
virus saimiri [23,30]. It was described initially as a product of
activated and memory CD4+ T cells [23,30,30,31] but it is
now known that the production of IL-17A is more ubiqui-
tous and has been demonstrated in gd T cells [32], CD8+

memory T cells [31,33], eosinophils [34], neutrophils [31]
and monocytes [35]. Nevertheless, the predominant source
of IL-17A (henceforth referred to as IL-17) remains the
CD4+ memory T cell population [4,33].

The broad cell and tissue distribution of receptors for
IL-17 (of which five have been described, namely IL-17R (the
dominant receptor for IL-17A), IL-17RB, IL-17RC, IL-17RD
and IL-17RE) in both humans and mice [27,29,30,36–38]
and the diversity of expression through alternate splicing
(reviewed in Moseley et al. 2003 [39]) argues for a pleiotro-
pic spectrum of biological activity that may extend beyond
the purely immunological, with the potential to act on many
different cell types. Indeed, experiments in animals suggest
that, unlike other cytokines, very little redundancy exists in
the IL-17 network as IL-17R-deficient mice are very suscep-
tible to lethal bacterial infections [40] and have inhibited T
cell responses [41].

Nevertheless, the predominant function of IL-17 is
thought to be as a proinflammatory mediator through a
variety of mechanisms as summarized in Fig. 1. Locally, IL-17
stimulates production of IL-6, nitric oxide and prostaglandin
E2 (PGE2) [4,30,42], while synergy with other inflammatory
cytokines such as IL-1b, tumour necrosis factor (TNF)-a,
IFN-g [43–45] and CD40 ligand (by increasing surface levels
of CD40) [46] leads to up-regulation of gene expression and
progression and amplification of local inflammation. IL-17
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Fig. 1. Proinflammatory effects of interleukin-17.
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mediates chemotaxis of neutrophils and monocytes to sites
of inflammation through the chemoattractant mediators
IL-8, monocyte chemoattractant protein (MCP)-1 and
growth-related protein (Gro)-a [45,47–49] while enhancing
production of haematopoietic growth factors, such as
granulocyte-colony stimulating factor (G-CSF) and
granulocyte-macrophage (GM)–CSF [26,50], which
promote the growth and maturation of the recruited myeloid
cells. Furthermore, IL-17 acts as a bridge between the innate
and adaptive immune response by augmenting the induction
of co-stimulatory molecules such as ICAM-1 by other cytok-
ines [45,51], thereby supporting T cell activation.

Although much is now known regarding the biology of
IL-17 in murine systems and there is compelling evidence for
an important role of IL-17 in inflammatory/autoimmune
conditions [52,53], attempts to overexpress IL-17A ubiqui-
tously in mice have failed due to generalized overproduction
being lethal to developing embryos [54], while overexpres-
sion of IL-17E leads to a generalized inflammatory syndrome
[55]. In humans, there is also a considerable body of evi-
dence suggesting an important role for IL-17 in the aetio-
pathogenesis of inflammatory and autoimmune diseases, as
discussed below.

Rheumatoid arthritis (RA)

Many lines of evidence support the role of IL-17 in the
pathogenesis of human RA [56]. Levels of IL-17 are elevated
in the synovium of patients with RA [57,58] and synovial
cultures from patients with RA spontaneously secrete IL-17
[59]; the source of this IL-17 is local production by T cells
[59] and juxta-articular bone lymphocytes [60]. Pathologi-
cally, this cytokine can activate and enhance all mechanisms
of tissue injury that have been described previously in rheu-
matoid arthritis. In particular, IL-17 can up-regulate and/or
synergize with local inflammatory mediators such as IL-6
[61,62], IL-1b and TNF-a [61–63], pro-oxidants such as
nitric oxide [64], as well as promoting extracellular matrix
injury through stimulation of production of matrix metal-
loproteinases (MMP) [65,66] and inhibition of matrix repair
components such as proteoglycans and collagens [67,68].
Furthermore, bone injury is enhanced [69] through promo-
tion of osteoclastogenesis via osteoclast activating factor
[57]. The combination of these factors has pathological
effects on bone (resorption), extracellular matrix (degenera-
tion), synovium (proliferation and inflammation), blood
vessels (angiogenesis) and immune cells (recruitment and
activation of monocytes and lymphocytes) in the rheuma-
toid joint. Not surprisingly, perhaps, intra-articular injection
of IL-17 in normal mouse joints induces similar changes to
RA [64] and excess local IL-17 (via adenovirus-mediated
gene expression vectors) exacerbates significantly CIA [20].

Many of these effects of IL-17 on synovium and bone
can be antagonized in vitro by treatment with IL-4, IL-13
or anti-IL-17 blocking antibody. These interventions can

reduce IL-17-driven production of inflammatory factors
such as leukaemia inhibitory factor [61], CCL20/MIP3a [70]
as well as decreasing matrix metalloproteinase (MMP) pro-
duction and increasing tissue inhibitors of MMPs [67]. Some
of the effects of IL-17 on articular cartilage can be attenuated
by this approach in vivo [64], while blockade of IL-17 abro-
gates completely the spontaneous development of inflam-
matory arthritis in IL-1R antagonist-deficient mice [71], and
mice lacking IL-17 are highly resistant to CIA [72].

Respiratory diseases

The importance of IL-17 to airways immunity is highlighted
by the susceptibility of IL-17R knock-out mice to fatal
pulmonary infections [40], which correlates with impaired
neutrophil mobilization and bacterial clearance [48,73].
Similarly, the pulmonary response to local introduction of
Escherichia coli endotoxin requires the presence of IL-17 for
neutrophil accumulation in the bronchoalveolar space
[47,73]. In mice and rats, there is evidence that activated
lymphocytes from lung tissues can produce substantial
amounts of IL-17 [47,74] and that the effect of IL-17 on the
respiratory epithelium is to produce chemokines that favour
a neutophilic infiltrate [47,75] and that increase neutrophil
activity in vivo (as measured by myeloperoxidase and elastase
release) [54,73].

Given these findings, it is perhaps not surprising that
exaggerated IL-17 responses are implicated in the pathogen-
esis of inflammatory airways diseases. Human respiratory
epithelial cells (and even some nonepithelial cells [34,75]), in
a similar manner to murine ones, are responsive to IL-17 and
can be stimulated to produce the same chemoattractant
molecules [49,50,75–77], although there is now evidence
supporting the notion that, under normal physiological con-
ditions, the human bronchoalveolar space releases only very
low amounts of IL-17 [78]. Severe respiratory inflammation
precipitated by exposure to organic dust in humans is char-
acterized by a marked increase in IL-17 levels in the
broncheoalveolar lavage and a 50-fold increase in neutrophil
recruitment to the lung [78]. Similarly, there are suggestions
that in pulmonary asthma there is not only an increase in the
number of IL-17-producing cells (T lymphocytes and
eosinophils in broncheoalveolar lavage) in comparison to
healthy controls both locally and within the circulation [34],
but also higher levels of intracellular IL-17 in IL-17-
producing cells than their healthy counterparts [34],
although not all studies agree on this [79].

Pathologically, IL-17 is likely to exert its effects through
exaggerated physiological mechanisms (highlighted above),
namely synergy with other cytokines and the recruitment of
neutrophils to lung tissues. Indeed, studies in allergen-
sensitized mice suggest that neutrophil accumulation in the
lungs following encounter with allergen is orchestrated by
IL-17 transcription [80]. This latter mechanism may be criti-
cally important as neutrophilic infiltrates and neutrophil
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enzymatic activity correlate with the degree of bronchial
hyperreactivity in patients with asthma [81]. IL-17-induced
IL-6 release may have dual pathological significance, as IL-6
promotes neutrophil elastase release [82] (elastase activity is
thought to be a key mediator in the pathogenesis of chronic
airway diseases [83,84] and reciprocally controls activity of
neutrophil IL-6 [85]) and is one of the mechanisms by which
IL-17 stimulates release of mucin by respiratory epithelial
cells [86]. Furthermore, IL-6 is important in the generation
of IL-17-producing cells (mouse data, see below). Also, many
of the effects of IL-17 on lung tissues can be antagonized by
glucorticoids [34,75], which form the mainstay of treatment
for inflammatory and allergic pulmonary diseases in
humans.

Despite the evidence in favour of a significant role for
IL-17 in inflammatory respiratory diseases in humans, most
of the evidence is circumstantial and there is no direct evi-
dence that this cytokine is the causative mediator or the
central participant (i.e. that production of IL-17 is the trigger
that precipitates these pulmonary diseases) and it may be
that an elevated IL-17 response is simply part of the gener-
alized inflammatory milieu. Certainly more evidence regard-
ing the role of the cytokine in lung pathology is required.

Allograft rejection

Rejection of transplanted tissues involves interplay between
mechanisms that maintain tolerance to the graft and factors
that promote rejection. While immunological factors are
important for both, the process of rejection is very much an
inflammatory one and, as a consequence, the production of
many proinflammatory cytokines, such as IFN-g, IL-2, IL-6
and IL-15, locally from infiltrating lymphocytes and resident
cells [e.g. proximal renal tubular epithelium (PTEC)], is
increased during acute renal graft rejection [87–89]. Studies
in acute rat rejection models have also identified an elevation
in IL-17 mRNA (in the renal allograft) and IL-17 protein
(in infiltrating mononuclear cells) as early as day 2 post-
transplant [90]. Similarly, IL-17 protein is elevated in human
renal allografts during borderline (subclinical) rejection
together with detectable IL-17 mRNA in the urinary MNC
sediment of these patients; in control (non-rejecting)
patients, IL-17 is not detectable in either the biopsy sample
nor the urinary sediment [90]. These findings have also been
described previously [91].

IL-17 induces IL-6, IL-8, MCP-1 and complement com-
ponent C3 but not regulated upon activated normal T cell
exposed expressed and secreted (RANTES) nor other
complement components [91] by PTECs [90–92] via the
src/mitogen-activated protein kinase (MAPK) pathways
[92]. An additional mechanism, through synergy with
CD40-ligand and proceeding via nuclear factor (NF)-kB
activation, has also been described [46].

In human lung organ transplantation, IL-17 has also been
reported as being elevated during acute rejection [93], while

rat models have demonstrated that collagen type V-specific
lymphocytes can mediate lung allograft rejection and
express IL-17 locally at the site of rejection [94]. In cardiac
allograft models, antagonism of the IL-17 network (via
expression of an IL-17R-immunoglobin fusion protein) can
reduce intragraft production of inflammatory cytokines
(namely IFN-g) and prolong graft survival [95]. This
approach, however, is more successful at preventing acute,
rather than chronic, vascular rejection [96] and may indicate
a more important role for IL-17 in mediating early rather
than late cardiac rejection. There may, in addition, be a role
for IL-17 in inducing the maturation of alloreactive den-
dritic cells [97].

Systemic lupus erythematosis (SLE) and other
conditions

IL-17 has been implicated in a variety of other chronic
human diseases, largely through demonstrations that the
cytokine is overexpressed in these conditions. Examples
include SLE [98], psoriasis [99,100], multiple sclerosis [101],
systemic sclerosis [102] and chronic inflammatory bowel
disease [103]. As this evidence is largely circumstantial, the
exact role of IL-17 in these conditions is unclear.

With regard to infectious agents, it is possible that IL-17
has a role to play as a virulence factor, particularly given its
homology to the gene in herpesvirus saimiri [23,30], a virus
that is tropic for T cells [104]. While expression of murine
IL-17 gene in a vaccinia virus does increase significantly its
virulence [105], IL-17 knock-out strains of herpesvirus
saimiri have unaltered pathogenicity [106], therefore the role
of IL-17 in viral infections is unclear. Nevertheless, certain
bacterial infections, notably Helicobacter pylori [107],
Bacteroides fragilis [108] and periodontitis [109] are associ-
ated with particularly high levels of IL-17.

Similarly, there are suggestions that IL-17 may be involved
in tumorigenesis, as IL-17 can both promote (e.g. human
cervical cancer cell lines transplanted into nude mice)
[110,111] and inhibit growth (e.g. haematopoietic tumours
in immunocompetent mice) [112,113] of tumours in experi-
mental animals. Although the role of IL-17 in tumour
biology is unclear and evidence remains conflicting, IL-17
can be detected in some (such as ovarian, skin and prostatic
cancers) [114–116] but not all (e.g. acute myeloid leu-
kaemia) [117] human tumours and one emerging theme is
that, when present, it promotes angiogenesis [111,114], for
example through the up-regulation of angiogenic factors
such as CXCL1, CXCL5, CXCL6 and CXCL8 [118], thereby
facilitating tumour growth and invasion. The alternative
explanation is the possibility that vascular tumours may be
better able to recruit activated/memory T cells, some of
which will be IL-17 producers and, by virtue of being highly
vascular, may portend a poorer prognosis.

In either event, there is now considerable evidence that
IL-17 is involved in the aetiopathogenesis of many human
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disorders. Whether IL-17 is a key causative factor or is
involved in the amplification of inflammatory responses has
yet to be elucidated.

Regulatory T cells

A number of cell types with immunoregulatory capacity
have been described in the literature. These include IL-10-
secreting Tr1 cells [119], transforming growth factor (TGF)-
b-secreting Th3 cells [120], Qa-1 restricted CD8+ cells [121],
CD8+ CD28– T cells [122], CD8+ CD122+ T cells [123], gd T
cell receptor (TCR) T cells [124], natural killer (NK) cells
[125,126], dendritic cells [127], apoptotic neutrophils
[128], CD8+ CD28– cells [129–132], CD3+ CD4– CD8– cells
[133,134] and naturally occurring CD4+ CD25+ T cells [135].
Given that both human and murine knock-outs for
CD4+ CD25+ cells develop severe autoimmune diseases
[135–138], the focus of attention in the literature has been
mainly on these regulatory T cells (referred to as Tregs in this
paper).

In vitro, Tregs have the ability to inhibit proliferation and
production of cytokines by responder (CD4+ CD25– and
CD8+) T cells [139–141] to polyclonal stimuli, as well as to
down-modulate the responses of CD8+ T cells, NK cells and
CD4+ cells to specific antigens [139,142]. These predicates
translate in vivo to a greater number of functions other than
the maintenance of tolerance to self-components (i.e. pre-
vention of autoimmune disease) [143] and include control
of allergic diseases [144] and regulation of responses to
microbial pathogens [145,146], as well as the ability to
prevent transplant rejection [147] and to maintain gas-
trointestinal tolerance [148] and maternal tolerance to semi-
allogeneic fetal antigens [149]. Indeed, donor-specific Tregs

can prevent allograft rejection in some models of murine
transplant tolerance [150–152] through a predominant
effect on the indirect alloresponse [153].

Although mutations in Foxp3, a forkhead-winged-helix
transcription factor, are responsible for the loss of Treg func-
tion in both mice [137] and humans [154] and overexpres-
sion of Foxp3 in mouse cells leads to development of a Treg

phenotype [154–156] and can act as a phenotypic marker
[12,157], FoxP3 expression may not be an ideal marker for
Tregs in humans [158] as FoxP3 is induced during TCR stimu-
lation [159] (in much the same manner as CD25), and there
is some debate as to whether the induced CD4+CD25+FoxP3+

population is suppressive or anergic [159,160]. Recent evi-
dence has also implicated the IL-7 receptor (CD127) as a
possible biomarker of Tregs in humans as the combination of
CD4 and CD25 together with low expression of CD127 iden-
tifies a group of peripheral blood T cells, which are highly
suppressive in functional assays and the highest expressors of
FoxP3 [161].

Regulatory T cells function in an antigen-presenting cell
(APC)-independent (at least in vitro) [162] and antigen-
non-specific manner [141,163]. However, they do respond to

their cognate antigen [164–166] and, while anergic in vitro
[139], Tregs can proliferate extensively in response to antigen
in vivo [167,168]. Although the exact mechanism by which
Tregs exert their effect is unknown, it is believed that their
suppressive function is contact-dependent on the basis of
transwell experiments, where suppression could be abro-
gated via separation of Tregs and effector T cells by a semi-
permeable membrane [141,163,169], and demonstrations
that signalling through the T cell receptor is critical to their
function [170,171]. These observations are divergent with in
vivo data showing an important role for TGF-b and IL-10
production as mediators of Treg activity [172,173], and do
not exclude the possibility that Treg function may involve
soluble mediators acting at very short distances from the cell
or bound to the cell surface [174,175]. Despite suggestions
that Tregs influence cells by direct contact, these cell-to-cell
interactions are poorly mapped. Indeed, there is evidence
that some of the activity of Tregs progresses through interme-
diaries, such as NK T [176] and mast cells [177], and that
their effect on target T effector cells includes an arrest in cell
cycle progression caused by uncoupling of IL-2 signalling
[178,179]. Recently, a role for IFN-g in the regulatory
function of Tregs has also been proposed based on the
up-regulation of IFN-g mRNA in alloantigen-reactive Tregs in
vivo hours after encounter with antigen and failure of skin
graft tolerance in the presence of IFN-g neutralization [180].

Tregs express constitutively CTLA-4 (cytotoxic T lympho-
cyte antigen-4) and there are suggestions that signalling
through this pathway may be important, for their function as
antibodies (or Fab) to CTLA-4 can inhibit Treg-mediated
suppression [181–183]. However, CTLA-4 is also inducibly
expressed on CD4+ CD25– cells [184] and therefore these
observations may be the result of CTLA-4 antibodies acting
on effector rather than regulatory cells and could explain
why the initial reports have been so difficult to reproduce in
mice [141] and humans [140,140,185]. For a review on
CTLA-4 in Treg biology, please see Sansom et al. [186].

Development and persistence of Tregs and IL-17-
producing cells

Tregs

It is now clear that CD4+ CD25+ Tregs can be derived from two
sources, namely those developing within the thymus (whose
contribution may therefore diminish with age) and those
generated in the periphery. Thymically derived Tregs are
thought to originate at the transition between the double-
positive and single-positive stages following encounter
between thymocytes that bear high affinity TCRs for self-
peptide with their cognate antigens [165,187], but this asser-
tion has been challenged recently by observations that
thymic commitment to a Treg phenotype may occur at an
earlier developmental stage [188]. The autoreactive Treg rep-
ertoire may be entrained by deletion following interaction
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with endogenous superantigens and APCs of both thymic
and bone marrow origin [164], but the peripheral Treg

repertoire retains a higher frequency of autospecific than
alloreactive cells [164]. How Treg precursors commit to a Treg

lineage in the thymus is unknown, but recent evidence
points (in mice) to an interaction with a gene locus inti-
mately linked with the MHC [189] (characterization of this
locus and the genes involved is awaited) and may involve an
important role for IL-2 signalling [190] and/or CD28
engagement [191].

Adults rendered temporarily lymphopenic have a greater
propensity to develop autoimmune diseases [192,193].
Although this may reflect loss of a significant proportion of
thymically derived Tregs (which are hard to regenerate given
age-related thymic atrophy [194,195]) leading to loss of self-
tolerance, one cannot ignore the fact that not everyone who
is made lymphopenic develops autoimmune disease. One
possibility is that the important determinant for mainte-
nance of tolerance to self-components may be the relative
frequency of effector cells to Tregs, as some chemotherapy
agents have an equal effect on both [196]. However, deple-
tion of CD25+ T cells from mice [197] or the adoptive trans-
fer of naive T cells into lymphopenic recipients [198] is not
sufficient for the development of autoimmune phenomena.
The second possibility is that Tregs are generated in the
periphery, an attractive notion that is supported by data
showing reconstitution of the CD4+ CD25+ Treg population
through conversion of CD4+ CD25– T cells [199,200].
Although this is not a robust phenomenon [12,157], there
are suggestions that discrepancies may be the result of com-
petition between CD4+ CD25– and CD4+ CD25+ T cells (i.e.
that the rate of conversion is related to the relative frequency
of the two cell types) [201] and that the number of Tregs may
be linked to the availability of IL-2 (and, by inference, the
number of IL-2-producing effector cells) [202]. Studies of
human Treg populations have shown these populations to be
highly proliferative and senescent in vivo with very short
telomeres [203], which is consistent with their memory/
CD45RO+ phenotype [140]. Their susceptibility to apoptosis
and short telomeres (with low telomerase activity) means it
is unlikely that they are capable of self-renewal; the more
likely explanation is that Tregs are generated in the periphery.

Other studies have corroborated the importance of IL-2
for the development of Tregs [204] and are summarized in the
review by Malek et al. [205]. Indeed, in an animal model of
graft-versus-host disease (GvHD) where autoreactive T cells
from donors deficient in Tregs (DO11·10 Rag–/– animals) are
infused into athymic antigen-expressing lymphopenic
recipients (sOVA transgenic thymectomized, lethally irradi-
ated mice reconstituted with Rag–/– bone marrow), develop-
ment and recovery from disease is reliant upon generation of
antigen-specific effector cells followed by de novo generation
of peripheral Tregs in a concomitant, IL-2-dependent manner
[206]. The added implication of these findings is that both
functional effector cells and Tregs can develop in parallel from

the same population of T cells in response to a single antigen
in the periphery.

The mechanism(s) by which Tregs are generated in the
periphery are unknown. However, there are indications that,
in the same manner as with Th1/Th2 cell polarization, the
antigenic stimulus (linked to the amount of antigen present
as well as the strength of interaction) may determine the
commitment to a Treg phenotype (low doses/weaker stimulus
result in more Treg generation) [207,208]. The mode of
antigen encounter, namely through (immature or sub-
optimally activated) dendritic cell presentation, also
seems important for the conversion of naive T cells to a
Treg phenotype [208,209], as may interactions with
anti-inflammatory molecules such as thrombospondin-1
[210]. The demonstration that TGF-b-deficient mice have
reduced numbers of peripheral [211,212] but not thymic
Tregs [213] and that TGF-b assists the conversion of naive
CD4+ CD25– T cells into Tregs both in vivo [209] and in vitro
[214,215] argue in favour of the importance of this cytokine
in the generation and maintenance of the peripheral Treg

pool. The potential importance of these observations to
human disorders will be discussed in the context of Th17
development below.

IL-17-producing cells

In mice, a discrete population of CD4+ helper T cells has
been described as the predominant source of IL-17. These
cells have been named Th17 cells. The initial basis of this
nomenclature is the dichotomous effects of IL-12 and IL-23
(both members of the same family of IL-12 cytokines,
sharing a common IL-12p40 subunit but differing second
subunits, IL-12p35 and IL-12p19, respectively [216]) on the
cytokine profile of CD4 cells. While IL-12 (signalling
through signal transducer and activator of transcription,
STAT-4) had been known to allow lineage commitment
towards a Th1 phenotype producing IFN-g as its signature
cytokine (via the transcription factor T-bet [8,9]) [5,7,217]
and inflammatory diseases had been viewed along the lines
of a Th1/Th2 paradigm (e.g. IL-12p40 neutralization in mice
ameliorates inflammatory diseases [218,219]), mice deficient
in IFN-g or IFN-g signalling remained, paradoxically, suscep-
tible to development of EAE and CIA [15,16]. Furthermore,
IL-12p40 (lacking both IL-12 and IL-23) and IL-12p19
(lacking IL-23)-deficient mice were protected against EAE
and CIA whereas IL-12p35 (IL-12)-deficient strains
remained susceptible [220,221] suggesting that IL-23 rather
than IL-12 was important in mediating the pathogenesis of
these conditions. Shortly after these observations, it was
reported that IL-23 stimulates production of IL-17 from a
population of memory (but not naive) CD4+ T cells in a
manner that does not exhibit elevation of IFN-g [21,222]
and that IL-17 is linked to the inflammation seen in CIA and
EAE [20,21,72]. Further evidence that IL-17 was derived in
mice from a discrete population of Th cells that were distinct
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from the Th1 lineage, termed Th17 cells, were provided by
publications showing resistance of Th1 and Th2 cells in vitro
to proliferation or production of IL-17 following stimulation
with IL-23 and that development of IL-17-producing cells
was inhibited by the presence of IFN-g and/or IL-4 in the
culture supernatant [223,224]. It has been proposed that
production of IL-12 has greater importance for systemic
responses and immunity to intracellular pathogens [225]
while IL-23, produced from activated human macrophages
and dendritic cells (DC) [226], has a more important role for
mediating mucosal immune pathology through the promo-
tion of Th1 and Th17 cytokine profiles, respectively [227].

It is now known that IL-6 [17–19] (see below), and not
IL-23 [17,18], is critical for the induction of Th17 lineage
commitment (which is supported by the fact that the IL-23
receptor is expressed exclusively on activated and memory T
cells [222,228]), while IL-23 seems to be important for the
selective expansion of these cells and production of IL-17
[229]. Indeed, other cytokines including IL-2, IL-15, IL-18
and IL-21 can also stimulate IL-17 production from (acti-
vated) human T cells and peripheral blood mononuclear
cells (PBMC) [226,229], while IL-12 potently inhibits it
[229]. Development of Th17 cells is dependent upon correct
co-stimulation (ICOS and CD28 [224]) and the absence of
IFN-g and IL-4, both of which are inhibitory [223]. Further-
more, Th17 lineage differentiation can be inhibited by the
Th1-specific transcription factor T-bet in the context of IL-4
blockade [230] and is characterized by the expression of the
orphan nuclear receptor RORgT [13]. Because IL-12 speci-
fies lineage commitment to Th1 and has a stimulatory effect
on IFN-g secretion by Th1 cells [229], IL-12 may play a
critically important role as a regulator of the balance
between Th1 and Th17 responses. This assertion is sup-
ported by in vivo mouse data in which IL-23 and IL-12 had
divergent pro- and anti-inflammatory roles in a model of
collagen-induced arthritis [221]. It is important to state that,
despite these observations, the description of discrete Th17
cells is mouse-specific and to date no committed Th17 cells
have been demonstrated in humans.

Figure 2 shows the cytokine network that is thought to be
important in the development and expansion of Th17 cells
and the dichotomous Th1/Th17 cytokine profile engendered
by these cytokines. Three recent papers have shed some light
on the mechanisms by which naive precursor T cells commit
to a Th17 phenotype in mice [17–19]. The first, a publication
by Veldhoen et al., showed that naive CD4+ T cells could be
skewed towards a Th17 phenotype in the presence of den-
dritic cells and Tregs in an inflammatory milieu (lipopolysac-
charide stimulation) [18]. Absence of Tregs leads to Th1
differentiation, presumably through interaction of naive T
cells with DCs producing IL-12. In the presence of Tregs and
DC, the important drivers of Th17 differentiation were Treg-
derived TGF-b and DC-derived IL-6, although both TNF-a
and IL-1b (both DC-derived) also augmented the commit-
ment to Th17. In this series of experiments, the IL-17-

producing cells did not express T-bet or GATA-3 and
addition of IL-12 and IL-4 or IL-18 inhibited Th17 develop-
ment, but the most important determinant of commitment
to a Th17 lineage was the presence of TGF-b, without
requirement for cell-to-cell contact. These data were cor-
roborated by Bettelli et al., who demonstrated using cells
from a Foxp3-GFP knock-in mouse strain that differentia-
tion towards Treg and Th17 phenotypes were mutually
exclusive - activation of naive precursor cells using anti-
CD3 in the presence of TGF-b lead to production of green
fluorescent protein (GFP)+ cells (i.e. Tregs) as per previous
observations, but activation in the presence of IL-6 in addi-
tion to TGF-b completely abrogated this and led to develop-
ment of Th17 cells (that were GFP–). The differentiated cells
were, respectively, functionally suppressive and inflamma-
tory and development of the Th17 phenotype was indepen-
dent of IL-23 [17]. The third paper, by Mangan et al.
published simultaneously [19], showed that addition of
TGF-b to naive CD4+ T cells resulted in the development
of Th17 cells, an effect which was augmented in the presence
of neutralizing antibodies to Th1 and Th2 polarizing cytok-
ines (IL-4 and IFN-g) or the use of CD4 cells from IFN-g
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Treg

Treg

Th1
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Thp Thp

IL-23IL-6IL-12

IL-17
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Fig. 2. Model of mouse helper T cell (Th) commitment to Th1, Th17

and T regulatory cell (Treg) phenotypes following encounter with

antigen. Production of transforming growth factor (TGF)-b by

naturally occurring Tregs leads to lineage commitment of precursor

helper T cells (Thp) towards Treg phenotypes. Stimulation of dendritic

cells (DC) by microbial antigens causes production of interleukin

(IL)-6, IL-23 and/or IL-12. Predominant production of IL-12

promotes commitment of Thp to a Th1 phenotype while IL-6, in

combination with Treg-derived TGF-b promotes skewing of Thp

towards a Th17 phenotype. IL-23 produced by DCs causes

proliferation and cytokine production by Th17 cells.
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deficient animals [19]. Furthermore, they demonstrated that
TGF-b up-regulated expression of the IL-23 receptor (which
may explain the responsiveness of the Th17 population to
IL-23). As before, supplementation of the culture conditions
with exogenous IL-6 resulted in loss of all Foxp3+ cells, while
blockade of IL-6 enhanced Treg development. Again, these
findings point to mutually exclusive pathways for Th17 and
Treg development based on the availability of TGF-b and
IL-6. A schematic for naive T cell commitment is represented
in Fig. 3. It should be noted, once again, that these data are
derived from mice and whether this pathway exists in
humans has not been determined.

A model for the regulation of T cell polarity
in humans

Although the majority of the data concerning commitment
to T cell lineages has been derived from mice, there is a clear
difference in lineage differentiation based on the mode of
stimulation and the cytokine milieu. The presence of discrete
IL-17-producing cells in humans has yet to be confirmed;
however, IL-17 is likely to be an important cytokine in the

mediation of many inflammatory diseases and allograft
rejection in humans. As such, one can propose a hypothesis
with regard to the pathogenesis of autoimmune/
inflammatory diseases and allograft rejection in humans that
is based on extrapolations of the mouse data on the assump-
tion that human cells exhibit discrete IL-17-producing
populations and can be skewed towards different lineages.

Specifically, the observation that many inflammatory or
autoimmune diseases present clinically as episodes of
inflammation (flares), with periods of quiescence in between
these episodes, argues for the presence of intervening periods
of ‘equilibrium’ where the immune system displays tolerance
to self-components (i.e. that proinflammatory components
are ‘regulated’). During acute flares, a state of ‘disequilib-
rium’ ensues in which immune responses against self-
components are dysregulated. The possibility arises that
during these episodes Th cell phenotypes become skewed
towards proinflamatory lineages (Th17 and Th1) (or that
there is enhanced survival of these lineages) and away from
anti-inflammatory phenotypes (Treg) on the basis of the local
cytokine environment and DC populations. The mechanism
of such a change could either be loss of skewing towards Treg

phenotypes (with default towards Th1/Th17) or a primary
shift towards the proinflammatory pathways. The central
cytokine in this pathway, on the basis of the mouse data, may
be IL-6, which is known to be elevated in most inflammatory
conditions. Presumably, the balance is redressed during the
recovery from flares and the equilibrium re-establishes itself.
The part played by anti-inflammatory/immunosuppressive
drugs in the resolution phase and the effects of these drugs
on specific subsets of T cells is not known at present.

Conclusions

Interleukin 17 is a pleiotropic cytokine with multiple proin-
flammatory functions that is likely to be involved in either
the causation or progression of inflammatory diseases and
transplant rejection in humans. Regulatory T cells are an
anti-inflammatory lineage of T cells that are derived natu-
rally from the thymus and also generated in the periphery on
the basis of the local environment. It is possible that acute
flares of autoimmune diseases or acute episodes of trans-
plant rejection may be explained by a change in the relative
dominance of these pathways in the periphery, either
through preferential differentiation towards proinflamma-
tory lineages or enhanced survival of these phenotypes. A
change in the local polarizing conditions may be important
in the skewing of these responses.
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